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Abstract

Background: First pass methods based on BLAST match are commonly used as an initial step to separate the
different phylogenetic histories of genes in microbial genomes, and target putative horizontal gene transfer (HGT)
events. This will continue to be necessary given the rapid growth of genomic data and the technical difficulties in
conducting large-scale explicit phylogenetic analyses. However, these methods often produce misleading results
due to their inability to resolve indirect phylogenetic links and their vulnerability to stochastic events.

Results: A new computational method of rapid, exhaustive and genome-wide detection of HGT was developed,
featuring the systematic analysis of BLAST hit distribution patterns in the context of a priori defined hierarchical
evolutionary categories. Genes that fall beyond a series of statistically determined thresholds are identified as not
adhering to the typical vertical history of the organisms in question, but instead having a putative horizontal origin.
Tests on simulated genomic data suggest that this approach effectively targets atypically distributed genes that are
highly likely to be HGT-derived, and exhibits robust performance compared to conventional BLAST-based approaches.
This method was further tested on real genomic datasets, including Rickettsia genomes, and was compared to previous
studies. Results show consistency with currently employed categories of HGT prediction methods. In-depth analysis of
both simulated and real genomic data suggests that the method is notably insensitive to stochastic events such as
gene loss, rate variation and database error, which are common challenges to the current methodology. An automated
pipeline was created to implement this approach and was made publicly available at: https://github.com/DittmarLab/
HGTector. The program is versatile, easily deployed, has a low requirement for computational resources.

Conclusions: HGTector is an effective tool for initial or standalone large-scale discovery of candidate HGT-derived genes.
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Background
Systematic studies have shown that horizontal gene
transfer (HGT) is prevalent in prokaryotes [1-3], where
it serves as an important driving force of microbial
evolution [4]. HGT challenges the detection of vertical
inheritance patterns in prokaryotes, and the application
of conventional phylogenetic approaches to infer evolu-
tionary history of microbial clades has seen increased
limitations [4-9]. In essence, the ubiquitous nature of this
process calls for the need to separate the vertical and
horizontal patterns in evolutionary history of bacterial
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genomes. However, this is not straightforward in practice
and is especially difficult for deep historical events because
the horizontally acquired genes evolved along with the
recipient genomes, gradually losing the signatures of their
original hosts (amelioration) [10]. Furthermore, HGTs
between closely related organisms, although common, are
difficult to detect because in these cases donor and re-
cipient share common compositional and phylogenetic
features. So far, multiple computational methods have
been developed to facilitate HGT detection, which may
be loosely categorized into three main strategies based
on sequence composition, phylogenetic analysis, or
best BLAST matches [11-13]. However, there appears to
be poor agreement between outcomes of diverse methods,
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and comparative studies have repeatedly demonstrated
that depending on method different sets of putative
HGT-derived genes are identified from the same data-
set, reflecting limitations in the current methodology
for HGT prediction [13-15].
Given the rapid increase in available annotated genome

data, and the associated computational challenge of
analyzing such data, the BLAST best match method has
remained a popular surrogate for first pass discovery
analyses of gene histories that differ from the strict ver-
tical pattern [16]. Specifically, this strategy is practiced
by sorting BLAST hits by measures such as bit scores,
an indicator of sequence similarity, and the best match
organism represented by the top hit is identified for
each gene [17]. If the best match is a distantly related
organism, instead of one expected by vertical inherit-
ance, then the gene is categorized as likely horizontally
acquired [18] (see Additional file 1: Figure S1A, B). In
practice, researchers often identify the best match using
the criterion of bidirectional best hits (BBH) [19] to rule
out potential paralogs. This approach has been applied in
numerous studies [16,20-24]. Examples of programs fea-
turing this approach include Pyphy [25], PhyloGenie [26],
NGIBWS [27], and DarkHorse [28,29], although the latter
also employs a user-definable filter threshold in combin-
ation with taxonomic scaling.
As expected, BLAST-based HGT detection has limita-

tions. The bit score is based on sequence similarity, and
provides only a rough estimate of the phylogenetic history
between organisms. Also, best hits do not necessarily repre-
sent the nearest neighbors [30]. Most importantly, unex-
pected best hit can also be caused by reasons other than
HGT, such as lack of sequence information in related or-
ganisms [15], gene loss events [31], stochastic similarity
[15] as well as database error [32]. In practice, the pre-
dicted HGT candidates are often rejected by downstream
phylogenetic analyses [33]. Similar to phylogenetic HGT
detection methods, BLAST best match is effective in de-
tecting recent HGT events, but shows reduced sensitivity
for ancient events, when donor and recipient sequences
have already diverged over the long history of evolution
[34]. Additionally, merely a best match does not necessar-
ily provide insights into the direction of gene flow.
Despite the listed issues, the best BLAST match

methods make use of all sequence data available in
GenBank. This sidesteps the need for manual subsampling
and curation of comparative sequence data that is a
challenging and time-consuming step in phylogenetic
methods. This strategy is therefore likely to remain a
feasible solution to explore microbial evolution in a first
pass step, utilizing all of the ever increasing genomic
data [35].
Considering this trend, we introduce a BLAST-based

method to facilitate the detection of horizontal gene
histories that aims to remedy some of the above outlined
issues. This approach starts with standard all-against-all
BLASTP, and is followed by an investigation of the weight
distribution of all hits grouped by phylogenetically in-
formed user defined categories (illustrated in Figures 1
and 2, Additional file 1: Figure S1). A general pattern of
BLAST hit distributions (a fingerprint) of the genomes of
interest is computed, and BLAST hit weights of each
single gene are compared to the general fingerprint.
This decreases sensitivity to stochastic disturbances.
Because phylogenetic information is incorporated into
this process, each resulting distribution is divided by
uniquely defined cutoffs into typical and atypical gene
populations. Using a combination of rules, a pool of
genes that is putatively horizontally derived is reported.
It is recommended that the atypical gene pool be sub-
jected to downstream phylogenetic validation of HGT,
which is implemented in this pipeline.
With this approach, the method retains all advantages

of BLAST-based methods, such as efficient and exhaustive
searches, which also facilitates re-analysis of data following
the addition of new data. Rather than using general filter
thresholds, and subsequent refining by taxonomic metrics
(see LPI in DarkHorse [28]), this method combines the
two steps into one, and defines unique thresholds for each
hierarchical level under consideration.
In order to assess the performance and robustness of

this pipeline regarding the identification of putatively
HGT-derived genes, it was applied towards simulated
genomic data with known HGT events under consider-
ation of various evolutionary forces. The method was
also tested on real genomic datasets from multiple
organismal groups, as exemplified by Rickettsia, whose
HGT patterns have been previously studied [36-41].
The consistency of these results was compared to those
obtained by other methods, including sequence com-
position and phylogenetic approaches. Overlaps between
results were investigated and discussed in the framework of
technical and biological challenges behind each method.

Methods
Method overview
At the core of this approach is an all-against-all BLASTP
search of the protein product of each protein-coding
gene (referred to as gene hereafter) of the genome(s) of
interest against the genome database. For each protein,
the BLAST hits are recorded and sorted by their bit
scores from high to low. The bit scores are then normal-
ized by dividing them by the bit score of the query se-
quence in order to account for protein length variance,
so that every hit has a normalized bit score within the
0–1 range [21]. The organism corresponding to each hit
and the taxonomic ranks of each organism are identified
and recorded from the NCBI taxonomy database.



Figure 1 Flowchart illustrating the procedures of the HGTector method. Parallelograms indicate input data or information, rectangles indicate
processing steps, diamonds indicate decisions, and rounded rectangles indicate start and end of the work flow. Graphic illustrations of hypothetical
phylogenetic tree, BLAST hit table and fingerprint are drawn on the right side of their corresponding steps.
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To proceed with the analyses, hits of each gene have
to be divided into self, close and distal groups. In other
words, the pipeline doesn’t use phylogenetic trees or
taxonomic lineage information directly, but rather allows
the user to define three relational hierarchical categories,
with the biological questions of the research in mind
(Figure 1, Additional file 1: Figure S1). This approach
allows flexibility, because it can be scaled to the level
of taxonomic/phylogenetic interest (e.g. intraspecies,
intragroup, etc.), and it can be adjusted to frequent
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Figure 2 Tree topology and fingerprint (distributions of BLAST hit weights) of tests on simulated genomes. One representative test using
either the idealized tree topology (A) or the randomized tree topology (B) is depicted (see text). The kernel density function of close weight distribution
for both topologies (C, D) shows the distribution of all genes in the input genomes in black, and that of actual positive genes (derived from HGT events
from distal group to self group) in red. Genes involved in other simulated evolutionary events are shown in different colors in the lower panels. Locations
of these genes in the general distribution are indicated as a rug below each plot. The scales of x-axes between the upper and the lower
panels are identical. Cutoffs computed by the program distinguishing the atypical region from the typical region are represented in dashed
(for relaxed criterion) and dotted (for conservative criterion) lines.
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updates in taxonomy. The self group is considered the
recipient, and always has to include the query genome
(s), and, depending on analytical scale may also include
its immediate sister organisms (e.g., different strains
within the same species, or different species within the
same genus). The close group will include representatives
of the putative vertical inheritance history of the group
(e.g., other species of the same genus, or other genera of
the same family which the query genome belongs to).
The distal group includes all other organisms, which
are considered phylogenetically distant from the query
genome (e.g., other families, orders, etc.). The method
will then aim to identify genes that are likely derived
from directional gene flow from groups of organisms
within the distal group to members of the self group.
We introduced a measure to quantify quality of

BLAST hits of each group. This measure (“weight”) is
calculated per group by summing up the normalized
BLAST bit scores of hits. Because three categories
were defined a priori, this step will result in three
weights per gene. The three weights of all genes of the
query genome are considered as three independent
statistical populations. If multiple genomes are analyzed
together, the weight populations can be merged. The three
distributions together are defined as a fingerprint of the
input genome(s).
A cutoff is set up to divide the weight distribution of

each group (self, close and distal) into typical (larger
than or equal to cutoff value) and atypical (smaller than
cutoff value). If most genes of the genome(s) have a
vertical inheritance history, the typical portion should
include a majority of the genes, while the atypical por-
tion should only include a small, but significant subset
of genes whose hits of this specific group are underrep-
resented. The cutoff defines the stringency of prediction:
the higher the weight cutoff, the more genes are consid-
ered as being atypical. The pipeline implements statis-
tical approaches to compute the cutoffs, but the user is
free to implement and use their own statistics. Because
each genome or set of genomes generates a different
fingerprint, cutoffs will vary, and are not transferrable
across analyses.
For any gene to be predicted as putatively horizontally

acquired, the following rules apply, which take into account
all three weight distributions for that gene:

Rule 1 The gene is below cutoff (atypical) in the close
weight distribution, suggesting that the
orthologs of the query gene are absent in all or
most of the sister groups of the organism of
interest. This means that the BLAST hits
belonging to this group are significantly
underrepresented, in terms of number of hits or
bit score, or both (Additional file 1: Figure S1B-D).
This phenomenon can be explained by: (i) the gene
lacks a vertical inheritance history, or alternatively,
(ii) the gene was vertically inherited, but
underwent multiple independent gene loss
events in the sister groups, a case that is usually
less likely to be true [11]. In the ideal scenario of a
high likelihood of HGT, the weight should be
zero, meaning that there is no close hit (Additional
file 1: Figure S1B,C). In real datasets however,
there are sometimes sporadic close hits with low
bit scores (Additional file 1: Figure S1D). These
hits may be due to stochastic sequence similarity,
secondary HGTs, paralogous genes or other
mechanisms. This situation typically causes false
negatives in conventional best BLAST match
methods [11]. However, in the present method,
these sporadic hits will not significantly alter the
overall weight of a gene, thus hardly affecting the
prediction results.
On the other hand, for a vertically transmitted
gene, its orthologs may not always be present in
each and every sister lineage. Occasional gene
loss events may take away some of the expected
number of close hits (Additional file 1: Figure
S1E). This situation is a major source of false
positives in best BLAST match methods [31].
However, this problem is effectively overcome in
the present method, because sporadic absences
of hits do not make the overall weight atypical.
Moreover, one or a few high-score distal hits
caused by natural (outgoing HGT from the self
group to the distal group) or artificial reasons
(contamination, mislabeling, etc.) (Additional
file 1: Figure S1F) can easily deceive conventional
methods [32]. However, the present method is
immune to this problem, as the close weight
remains unchanged in this situation.

Rule 2 The gene is equal to or above cutoff (typical) in the
distal weight distribution, meaning that the hits
from distant organisms are not underrepresented
(Additional file 1: Figure S1A-F,H). This criterion
sets up a filter at the donor side of potential HGT
events: given the gene was transferred from a
representative or ancestor of organisms that
belong to the distal group, BLAST hits of the
distal group itself should not be underrepresented.
Otherwise, it is not convincing to conclude that
the gene is HGT-derived.
The goal of this rule is stringency, in order to
better distinguish putative HGT events from
other scenarios that can also make a gene’s close
weight atypical: (1) de novo gene origination
within the self group, (2) inaccurate genome
annotation that considers a non-coding region a
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gene, or (3) HGT from an unsequenced organism
that is not phylogenetically close to any sequenced
groups of organism. These scenarios usually result
in few to no distal hits (Additional file 1: Figure
S1G, upper panel). Meanwhile, (4) sequence
similarity due to randomness instead of homology
may also bring in some distal hits with low bit
scores (Additional file 1: Figure S1G, lower panel).

Rule 3 (optional) The gene is below cutoff (atypical)
in the self weight distribution. It means that a
gene is only sporadically detected, rather than
being prevalent across the whole self group of
organisms (Additional file 1: Figure S1B, H).
This option will restrict the prediction to a
subset of putatively HGT-derived genes that
were acquired by specific lineages of the self
group, instead of the whole self group. Often,
these could be recent transfer events.

To assess the source of a putative HGT event, the best
match organism from the distal group is reported. It is
important to understand that this best match is likely
not the actual physical donor, but may be an extant rep-
resentative of an ancestral, extinct donor. We recom-
mend using “donor link” to describe the directionality of
transfer, and relationship between these organisms, in-
stead of “donor” [37].
A flowchart of the procedures of this method is illus-

trated in Figure 1.

Computational pipeline
General procedure
The HGTector pipeline (publically available at: https://
github.com/DittmarLab/HGTector) is written in Perl, and
is cross-platform supported, running in Windows, Mac
OS and Linux systems. It requires only the Perl interpreter
with its core modules, a default component of most Mac
OS and Linux distributions and is very easy to install in
Windows systems. In the default mode, the program
depends on no additional software or local databases to
run. This characteristic maximizes the ease of instal-
lation for users without professional computer back-
ground and resources. Optionally, it calls R [42] to
perform advanced statistical computing and graph-
ing. Parameters of the program are managed by a
central configuration file, which can be created and
edited manually or via a graphical user interface
(GUI). The program is composed of the following
procedures:
First, the program performs batch BLASTP of protein

products of multiple genes supplied by the user. Multiple
formats ranging from simple lists of NCBI accession
numbers to annotated genomes in GenBank format are
supported. It runs BLASTP either via web connection
to the NCBI server, or with a standalone BLAST program
and a local database. Faster alternatives to the original
BLASTP may also be used, as long as their output files
are in a compatible format. It also harvests taxonomic in-
formation of each hit for each gene from the NCBI tax-
onomy database. Hierarchical taxonomic reports (NCBI
TaxBlast) and sequences of hits (original or aligned) can
be retrieved optionally. BLAST results are saved in
NEXUS format [43], which can be directly viewed by
text editors, or opened as multiple sequence alignments
by external programs such as SeaView [44], for add-
itional analyses. This characteristic facilitates down-
stream analyses, and compatibility with other programs.
BLAST hits are filtered by multiple optional functions

to overcome putative taxon sampling bias that may
affect BLAST hit distribution: (1) When multiple hits
are present for one organism (e.g., dozens of copies of a
mobile element), only the best hit is maintained, repre-
senting the putative ortholog of the query protein [45].
(2) When multiple genomes are present for one species
(e.g., hundreds of sequenced Escherichia coli strains),
only the genome that contains the best hit is maintained.
(3) Taxonomic name keywords or IDs that represent un-
wanted BLAST targets, such as inaccurately defined
taxonomic ranks (e.g., genus Clostridium) and biological
categories (e.g., “environmental samples”), can be speci-
fied so that these hits will be omitted.
By default, the program will exclude genes without any

non-self hits from subsequent analyses, because they
may represent ORFans [46], resulting from de novo gene
origination events (which are very rare [47]), or transfer
events from unknown sources that are very dissimilar
from any sequenced genomes. Alternatively, they may
represent genome annotation errors, which have been
long recognized as a common and perturbing issue
[48-50]. While these genes are not considered in the
subsequent analysis, the genes are reported as “putative
ORFans or annotation errors”, or POE, in this pipeline
(Additional file 1: Figure S1G, upper panel). This allows
the user to check which POEs were omitted, and if neces-
sary make further adjustments to the analytical set up.
Based on the retrieved taxonomic information, the pro-

gram can automatically formulate a grouping scenario, in
which the lowest rank that includes all input genomes is
defined as the self group, and the next higher rank as the
close group. Because taxonomic classifications in GenBank
may not always reflect the most current natural groupings
of organisms, users may manually define hierarchies based
on current knowledge of phylogeny and the purpose of
their research.
With a properly defined grouping scenario, the pro-

gram then calculates the three weights of each gene,
computes a fingerprint of the whole genome(s), defines
proper cutoffs and determines the population of atypical
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events, and possible HGTs based on the selected rules.
Basic statistical parameters of the three distributions of
weights, as well as the weight populations themselves
are reported. The fingerprint may be visualized by
box plots, histograms, density plots and scatter plots
(Figures 2 and 3). Statistical analyses and graphing of
BLAST hit distributions are automated in the program.
They are performed using Perl codes, or by sending
commands to R [42]. The communication between Perl
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kernel smoothing with Silverman's rule-of-thumb band-
width selector [52]. The user is allowed to choose a proper
bandwidth selection factor that controls the smoothness
of the curve. The function is plotted and made visible
to the user in real time. Statistically significant local
minima (pits) and maxima (peaks) are computed using
the “pastecs” package [53] with default parameters
following Kendall’s information theory [54], and their
x-coordinates are recorded and displayed to the user.
The program then automatically identifies a local mini-
mum separating the typical from the atypical proportion
of the gene population under consideration. Specifically,
the biggest peak or group of continuous peaks in terms
of number of genes it covers is identified as the typical
region, and the rest is defined as the atypical region
(Figures 2 and 3).
In addition to the apparent typical peak, there is usually a

clearly identifiable peak located close to zero (referred to as
the “zero peak” hereafter). This peak usually includes “ideal”
putatively HGT-derived genes (=zero BLAST hit).
Between the zero peak and the typical peak is a transitional
zone that likely consists of genes with ambiguous evolu-
tionary history (see Results and Discussion).
The program automatically reports two cutoffs: the

x-coordinate of the identified local minimum is naturally
chosen as a cutoff (referred to as the “relaxed cutoff”
hereafter). However, based on results of repeated tests,
we recommend using the second cutoff, which is de-
fined as the arithmetic mean of the x-coordinates of the
local maximum of the zero peak and the local minimum
of the selected pit (referred to as the “conservative cut-
off” hereafter) (Figure 2C, D). The choice between the
two cutoffs depends on the goal of research, but for the
identification of putative HGT events, the conservative
cutoff is preferred as it meets a balance between preci-
sion and recall (see Results and Discussion).
The program also implements several functions to assess

the statistical significance of separating atypical genes from
typical ones. For the whole weight population, the pro-
gram performs Hartigans’ dip test [55] to assess the non-
unimodality of the weight distribution, which essentially
is the statistical significance that a distribution can be
divided into two or more distinct parts. The test is per-
formed by calling the “diptest” package in R [56]. The
dip statistic and the p-value for the test for unimodality
are reported. For each individual gene, the program
computes a density-based silhouette (dbs) (using the
“pdfCluster” package in R), which is a statistical measure
of confidence that a certain data point (gene) is allocated
to a cluster (here the atypical region) [57].
The same procedures apply to the distribution of the

distal weight (and the self weight, if the optional rule 3 is
chosen). In addition to the above described statistical ap-
proaches, power users may also perform extra statistical
analyses based on the weight data output by the program,
and type user-defined cutoffs.
Based on the cutoffs, the program reports a population

of genes with an atypical, non-vertical history, which in the
context of the a priori provided phylogenetic information
represents a putative horizontal history. The results are
summarized in a choice of plain text, web page (HTML) or
Excel spreadsheet formats. The latter allows for convenient
downstream statistics of outputs, and includes hyperlinks
that allow users to track each of the genes back to their
original BLAST report. It not only reports the number
and percentage of putatively HGT-derived genes, but
also optionally categorizes each gene in three contexts:
(i) By putative donor group, which is described by user-
designated higher taxonomic rank of the best match
organism (based on GenBank annotations). (ii) By func-
tional annotation of protein products, which is provided
by external sources, such as the output of Blast2GO [58].
(iii) By gene orthology (evolutionary history of each in-
dividual gene family across input genomes), which is
identified by a built-in function of BLAST hits clustering or
from external sources, such as the output of OrthoMCL
[59]. These reports (for example see Additional file 1:
Figure S1G) allow users an intuitive view of the preva-
lence of HGT-derived genes and the evolutionary, eco-
logical and functional implications of HGTs at levels
of individual genes, gene families, whole genomes and
multiple phylogenetically related genomes.
The whole analysis can be performed on a regular per-

sonal computer, as it does not require extensive comput-
ing power. Batch-BLAST is the most time-consuming step,
which typically lasts several hours to several days, de-
pending on the number of protein-coding genes in the
genome(s) of interest. The computation time can be re-
duced if faster BLAST alternatives or smaller databases
are used. The statistical analysis typically takes only minutes.
Data generated by the program can be parsed and re-used
by other programs for multiple purposes.
As an additional, and important function, the program

provides a complete phylogenetic pipeline, which auto-
mates the process of multiple sequence alignment, align-
ment trimming and phylogenetic tree reconstruction, by
calling external local programs such as ClustalW [60],
Gblocks [61] and RAxML [62], and parsing their outputs.
Reconstructed phylogenetic trees are annotated with organ-
ismal names and are attached to BLAST reports, which in
turn can be directly viewed by external programs such as
FigTree [63]. This function allows users to monitor and val-
idate prediction results by manually checking the evolution-
ary scenarios of individual genes.

Analysis of simulated genomic data
To assess the performance of this method under the impact
of various evolutionary scenarios, as well as to compare
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HGTector to conventional BLAST methods, we tested the
above-described pipeline on simulated genomic data.

Simulation of genome evolution
Simulated genomic data were generated by ALF (Artificial
Life Framework) version 1.0, a program that simulates
genome evolution [64]. In each simulation, 100 species
evolved from one randomly generated root genome con-
taining 1000 protein-coding genes that are no shorter than
50 aa. During the process random inter-genomic HGT
events occurred under a pre-defined global rate, which
varied between simulations (see below). The process also
simulated the following evolutionary forces in addition to
HGT, at random rates: speciation, character substitution,
insertion and deletion, GC-content amelioration, rate
variation among sites and among genes, gene duplica-
tion and loss. Many of these forces are known to affect
HGT prediction [15,31,32].
Two types of simulations were performed. First, an

idealized, pre-defined tree topology was used, in which
all representatives of close- and self-designation are grouped
in a polytomy, signifying (in this case) equal genetic dis-
tance, thus eliminating the impact from evolutionary arti-
facts. The rest of the taxa are placed relatively distant
(unrelated) in the tree to lower the possibility of stochastic
BLAST matches. The topology is detailed as follows: 10
clades branch from the tree base simultaneously at time
point 0 (unit: PAM distance, same below). In each clade,
10 species branch off simultaneously at time point 90. The
tips are at time point 100 for all species. For each clade,
one species was randomly chosen as the input genome
(also the self group), while nine species were defined as the
close group. All 90 species in other clades are considered as
the distal group (Figure 2A). All ten clades were analyzed
in this manner. This simulation was replicated 10 times
(=100 analyses), with the HGT rate ranging from 0
(negative control) to 0.0045 with an interval of 0.0005.
Second, a randomized birth-death tree was generated

in ALF per simulation (birth rate = 0.1, death rate = 0.01,
height = 1000), mimicking a more realistic topological
situation. A random clade was manually chosen from the
tree, as long as it met the following criteria: (1) 3–8 self
species that formed a clear monophyletic group; (2) 10–20
close species that were closely related to the self clade; (3)
the self and close species together formed a clear mono-
phyletic group that was independent from all other species
(the distal group) (Figure 2B). This simulation was repli-
cated for 100 times, with the HGT rate of each replicate
randomly sampled from a range of 0 to 0.005.
Evolutionary events (HGT, gene duplication, gene

loss, etc.) simulated in each analysis were extracted
from the ALF log file. The time, species and genes
involved in these events were recorded. HGT events
involving the self group were further categorized by
their donor, recipient and time into the following
groups: target HGT (HGT from the distal group to the self
group, which are the actual positives to be targeted by
HGTector), ancient HGT (HGT from the distal group to
the ancestor of the self group), outgoing HGT (HGT from
the self group to the distal group, which is equivalent in
consequence to a database error that mislabels a sequence
with another organism), and secondary HGT (target HGT
combined with one or more additional transfers between
the self and the close groups). Gene loss and gene duplica-
tion events taking place in the close group were singled
out as they directly influence the distribution of the close
weight.
For each simulation (idealized or randomized tree

topologies), a BLASTP database including the protein
sequences from all 100 genomes was created using the
standalone BLAST program [17]. All-against-all BLASTP
was performed with an E-value cutoff at 1 × 10−5 for all
genes in the selected self genomes, considering at least 20
hits. In order to demonstrate the effect of gene duplication
on the prediction result, the program option of excluding
paralogs was turned off.
A modified version of the HGTector pipeline was created

to parse the ALF outputs and to perform analysis. Both the
conservative and the relaxed cutoff criteria were tested. The
fingerprint was plotted along with the distribution of actual
positives (target HGTs) as well as other evolutionary
scenarios (see above) for manual observation in addition
to statistical analysis.
Comparison to conventional BLAST approach
The performance of HGTector in the context of identifying
atypical and putatively HGT-derived genes, was compared
against that of commonly used conventional BLAST-based
methods by modifying the pipeline to mimic the con-
ventional approach, which does not consider overall hit
distribution. Specifically, we considered HGT-events for
the scenario where no close hits are present (criterion:
C = 0); or the scenario where there is at least one distal
hit with a bit score higher than those of any close hits
(criterion: D > C).
Assessing performance
The predicting power in the context of target HGTs
under each criterion, as well as for conventional BLAST
was assessed by precision and recall. Precision describes the
number of true positives over the number of all predicted
positives (=How many of the predicted HGTs are real),
and recall describes the number of true positives over
number of all actual positives (=How many of all real
HGTs were found), which are commonly used perform-
ance markers for binary classifications. Statistical analysis
and plotting were conducted using R [42].
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Application of HGTector to real datasets
HGTector was further tested on a variety of real-world
genomic data, covering bacteria (5), unicellular eukaryotes
(1) and human (1) (Table 1), the last of which serves as a
realistic negative control since HGTs into genomes of
higher animals are known to be very rare [5]. The most in
depth analysis was conducted on the Rickettsia dataset,
because it affords comparisons to previous results obtained
with a variety of methods [29,36,37,39,65,66].

Analysis on the Rickettsia dataset
Out of all available Rickettsia genomes, we selected seven
representative Rickettsia species with fully-annotated ge-
nomes for this analysis (Table 1). All of these species belong
to the spotted fever group (SFG), a traditional classification
group of Rickettsia. A grouping scenario was chosen based
on the taxonomy and phylogeny of major Rickettsia species,
which has been well resolved by recent studies [37,41,67].
Specifically, we defined the self group as SFG (NCBI
taxonomy ID: 114277), the close group as order Rickettsiales
(766), excluding SFG, and the distal group as all non-
Rickettsiales organisms.
All-against-all BLASTP was performed against the NCBI

non-redundant protein sequences (nr) database with an E-
value cutoff at 1 × 10−5. A soft filtering for low sequence
complexity regions, which was suggested as the optimal
parameter for ortholog identification [68], was used. Hits
with organism names containing these words were ex-
cluded for the purpose of this analysis: unknown, uncul-
tured, unidentified, unclassified, environmental, plasmid,
vector, synthetic, and phage. Up to one hit from each or-
ganism was preserved. A maximum number of 200 hits
were preserved for each protein. A global fingerprint was
computed and graphed to describe the pattern of BLAST
hit distribution of all seven genomes. Cutoffs for the three
groups of weights were computed using the built-in kernel
density estimation function under the conservative criter-
ion. The default rules 1 and 2 were applied.

Assessing stochastic events using real datasets
To test the impact of stochastic events on prediction
results, the following simulations were carried out on the
Rickettsia dataset: (1) database error (some sequences are
mislabeled by incorrect organism names), (2) gene loss
in the close group, (3) rate variation in the close group,
(4) rate variation in the input genomes, (5) taxon sampling
bias (some groups of organisms are overrepresented in the
genome database), and (6) smaller sample size of genes.
Multiple degrees of modification intensity (x) for each type
of events were tested, each having 100 replicates (except for
taxon sampling bias). Specifically:

1. Database error. For each hit, there is x proportion of
chance that its corresponding organism was
assigned to an organism randomly sampled from the
pool of BLAST results of all genes.

2. Gene loss in the close group. For each close hit,
there is x proportion of chance of being removed
from the BLAST hit table.

3. Rate variation in the close group. For each close hit,
there is x proportion of chance that its bit score is
divided by a factor subject to a gamma distribution
with shape parameter k = 2 and scale parameter θ = 1:

S1 ¼ S0= 1þ Γ 2; 1ð Þð Þ

Where S0 and S1 refer to the bit score before and

after manipulation, respectively.

4. Rate variation in the input genomes. For each query
gene, there is x proportion of chance that the bit
scores of all its hits are divided by a factor subject to
a gamma distribution same as above.

5. Taxon sampling bias. For selected representative
groups of organisms from close and distal groups
(see Results and Discussion), all hits belonging to
this group were replicated into x copies (x identical
but separate hits).

6. Smaller sample size of genes. x out of all 8484 genes
were randomly selected for fingerprint calculation in
each replicate. The resulting cutoffs were in turn
used for prediction on all genes. Replicates that
failed to pass the Hartigans’ dip test (that is, the
population of either close or distal weights is not
significantly non-unimodal) (p-value threshold = 0.05)
were counted and excluded from the analysis.

HGTector analysis was conducted on these replicates
using the same procedures as in the standard analysis
on the unmodified dataset (see above). The results
were compared to the results derived from a conven-
tional BLAST-based approach under the D > C criterion
(see Analysis of simulated genomic data). Precision and
recall of the results were computed using the result of the
standard analysis as the reference.

Cross-method comparison
In order to evaluate the performance of HGTector on
the Rickettsia dataset in the context of other available
methods, results were compared to two examples from
each of the three currently employed strategies: BBH
(bidirectional best hit) [19] and DarkHorse [28,29] based
on best BLAST match; GIST [69] and IslandViewer [66]
based on sequence composition, and two studies conducted
by Merhej et al. [37] and Le et al. [36], using phylogenetic
approaches. We exemplified this comparison on the R. felis
genome, which previously has been demonstrated to have
high HGT frequency [37,39,65].



Table 1 Real genomic datasets tested in this study

Category Self group Close group No. of genes Date of BLAST Max. no. of hits List of input genomes (organism name and
NCBI accn. no.)

Alphaproteobacteria SFG Rickettsia Rickettsiales 8484 Jan. 2013 200 R. akari str. Hartford [GenBank:NC_009881]

R. felis URRWXCal2 [GenBank:NC_007109]

R. massiliae MTU5 [GenBank:NC_009900]

R. slovaca 13-B [GenBank:CP002428]

R. rickettsii str. ‘Sheila Smith’ [GenBank:NC_009882]

R. africae ESF-5 [GenBank:NC_012633]

R. conorii str. Malish 7 [GenBank:NC_003103]1

Firmicutes Streptococcus Bacilli 11906 Nov. 2013 100 S. anginosus C238 [GenBank:NC_022239]

S. gallolyticus UCN34 [GenBank:NC_013798]

S. intermedius B196 [GenBank:NC_022246]

S. mutans LJ23 [GenBank:NC_017768]

S. pneumonia A026 [GenBank:NC_022655]

S. suis JS14 [GenBank:NC_017618]

Epsilonproteobacteria Helicobacter Campylobacterales 10531 Mar. 2013, Nov. 20132 200 H. acinonychis Sheeba [GenBank:NC_008229]

H. bizzozeronii CIII-1 [GenBank:NC_015674]

H. cinaedi PAGU611 [GenBank:NC_017761]

H. felis ATCC 49179 [GenBank:NC_014810]

H. mustelae 12198 [GenBank:NC_013949]

H. hepaticus ATCC 51449 [GenBank:NC_004917]

Gammaproteobacteria Erwinia Enterobacteriales 19013 Mar. 2013 200 E. amylovora ATCC 49946 [GenBank:NC_013971]

E. billingiae Eb661 [GenBank:NC_014306]

E. sp. Ejp617 [GenBank:NC_017445]

E. pyrifoliae DSM 12163 [GenBank:NC_017390]

E. tasmaniensis Et1/99 [GenBank:NC_010694]

Actinobacteria Mycobacterium africanum Mycobacterium 3830 Oct. 2013 100 M. africanum GM041182 [GenBank:NC_015758]

Unicellular red algae Galdieria sulphuraria Eukaryota 7174 Dec. 2013 50 G. sulphuraria [GenBank:ASM34128v1]3

Higher animal Homo sapiens Animalia 225164 Nov. 2013 1000 H. sapiens [GenBank:GCF_000001405.13]
1The genomes used in this study are identical to those used in [37].
2Two independent analyses were conducted on different dates, and similar outcomes were obtained. The more recent result was reported.
3The genome used in this study is identical to that used in [79].
4For genes with multiple isoforms, the longest CDS was extracted using an in-house Perl script and used for the analysis.
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Specifically, BBH analysis was performed as a built-in
function of the present pipeline. This method is similar
to the D > C criterion as described above, except for an
additional reverse BLAST step with the same parameters
to confirm that the two sequences are each other’s
best match within their host genomes. The result by
DarkHorse was downloaded from the DarkHorse server
(darkhorse.ucsd.edu). Default parameters were used, in
which the BLASTP E-value cutoff is also 1 × 10−5. All
three available phylogenetic granularities, strain, spe-
cies and genus, were used and the results were merged,
in order to maximize the discovery rate. Both GIST and
IslandViewer are targeting large pieces of heterogeneous
genomic regions, or genomic islands (GI) [70]. GIST is a
synchronization of five subprograms: AlienHunter [71],
IslandPath [72], SIGI-HMM [73], INDeGenIUS [74] and
PAI-IDA [75]. The subprograms were executed in a local
system and the results were processed using the EGID al-
gorithm [76] to get a consensus result. IslandViewer is an
integration of three subprograms: IslandPick, SIGI-HMM
and IslandPath. The integrated result was downloaded
from the IslandViewer server (www.pathogenomics.sfu.ca/
islandviewer). Results of GIST and IslandViewer were
further processed by an in-house Perl script to extract
the genes included in the genomic islands. The puta-
tive HGT-derived genes predicted by Merhej et al. [37]
and by Le et al. [36] were extracted from the original
publications. Specifically, Merhej et al. identified 152
HGT-derived genes in the R. felis genome that are
linked with organisms other than SFG Rickettsia [37].
Le et al. identified 11 instances of HGT from outside
Rickettsiales into the R. felis genome [36].
The predicted HGT-derived genes or genomic islands

by different methods were spatially mapped to the R. felis
genome and visualized in Geneious 6.0 [77]. An “overlap
factor” (OF) was employed as a criterion to compare the
outcomes of different methods by assessing the overlap.
This was expressed as the negative logarithm of the likeli-
hood that the overlap was obtained by chance. To com-
pute an OF, the number of the same genes predicted by
each method pair was counted, and the OF was calculated
following the probability mass function of the hypergeo-
metric distribution:

OF ¼ − log
a
k

� �
n−a
b−k

� �
=

n
b

� �� �

Where n is the total number of genes; a and b are the
numbers of genes predicted by two methods, respect-
ively; k is the number of genes overlapping by two sets
of results. The larger an OF is, the more overlapping,
and thus more consistent the two sets of results are, and
the more likely it is that the two methods are identifying
the same group of genes.
Results and discussion
Performance on simulated genomic data
Testing precision and recall
In all experimental groups under the idealized tree
topology, a clear bimodal distribution was observed
(Figure 2C), which is expected when HGT is present in the
data. Meanwhile, none of the negative control groups have
an identifiable zero peak, which is equivalent to a vertical
history for all genes (no HGT events). Both cutoff criteria
achieve high precision and recall simultaneously. In
particular, under the conservative criterion, 99.4% of
the prediction results are true positives. Meanwhile,
they cover over 91.3% of all actual HGT-derived genes.
The more relaxed criterion still achieves a precision of
95.3% and a recall of 96.8%.
In tests under randomized tree topologies, a larger

transitional zone is present between peaks of the expected
bimodal distribution, which is also frequently observed in
real datasets. Both, precision and recall are affected com-
pared to the idealized scenario, but in different measures.
The conservative cutoff still maintains reasonably high
precision (81.6%) and recall (90.5%) simultaneously, relative
to the known number of HGT events. The relaxed criterion
keeps equally high recall (96.6%) but its precision drops
significantly (42.6%) (Figure 4, Additional file 1: Figure S2).
Because the test under randomized topologies is a

more realistic representation of datasets, its result serve
as a better reference for the practical consideration of
the HGTector application. Given the simultaneously
high precision and recall, we recommend using the con-
servative cutoff for both initial HGT candidate screening
(to be followed by phylogenetic analysis or other analyses)
and standalone HGT discovery (when further in-depth
analyses are not applicable). The relaxed cutoff may be
considered only when the user wants to maximize dis-
covery rate in an initial screening, in spite of its higher
false positive rate. The comparison between idealized
and randomized topologies further indicates the positive
correlation between prediction success and a properly
defined grouping scenario, in which: (1) the self-close
clade is relatively distant from any other organisms;
and (2) there are multiple subclades in the close group,
each having similar number of taxa represented in the
database.
Varying global HGT rates seemingly show little effect

on the stability of precision and recall of this method
(Additional file 1: Figure S3), suggesting that the predicting
power is independent of HGT rate.
In comparison, the performance of both conventional

BLAST-based approaches (C = 0 and D > C) is notably
unbalanced. Atypical genes falling under the C = 0 cri-
terion have the highest precision (100.0% and 97.1%,
for idealized and randomized tree topology, respect-
ively), but very low recall (78.1% and 73.7%). The D > C

http://www.pathogenomics.sfu.ca/islandviewer
http://www.pathogenomics.sfu.ca/islandviewer


Figure 4 Comparison of performance of HGTector and conventional BLAST-based method on simulated genomes. The methods were
tested on the simulated genomic data under an idealized (A) or randomized (B) tree topology. “Con” and “Rel” represent conservative and
relaxed cutoffs in the HGTector analysis. “C = 0” and “D > C” are two criteria in the conventional BLAST-based method. Each experimental group is
composed of 100 tests. The distribution of results in terms of precision (red) and recall (blue) is depicted by box plots. The mean value of each
group is label above the corresponding column.
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criterion has high recall (99.7% and 98.7%) but ex-
tremely low precision (39.3% and 33.1%), showing an
intolerably high false positive rate (Figure 4, Additional
file 1: Figure S2). From a practical perspective, C = 0 is
too stringent, thus omitting a big portion of true HGT-
derived genes affected by stochastic events, while D > C is
too relaxed and not capable of differentiating genes that
have high-score distal hits merely due to stochastic rea-
sons instead of HGT (see below). It should be mentioned
that C = 0 is not applicable to real datasets due to frequent
genome annotation errors and ORFans, both of which
may have a zero close weight.

Evaluating other evolutionary scenarios
The impact of other evolutionary events on the fingerprint
and the division between typical and atypical gene popula-
tions was explored. Outgoing HGT (from self to distal)
seemingly does not significantly alter the close weight of
a gene. Gene loss decreases close weight and gene dupli-
cation increases it, both within an insignificant range
(Figure 2C, D). Most importantly, genes within these
three categories of evolutionary history still fall within
the typical region and were not mistakenly detected as
atypical by HGTector.
It is particularly notable that the majority of genes derived

from ancient HGT events are located in the transitional
zone (Figure 2D). Expectedly, they constitute a considerable
portion of false positives in our analyses. In other words,
depending on cutoff, more of them are likely to be
placed in the typical population, instead of the atypical,
and presumably non-vertical population. A similar pattern
was observed for secondary HGT events. Although not
frequent in the simulated genomes here, these events are
actually very frequent in real datasets, as HGT frequency
is higher between closely related organisms [78]. However,
in the conventional BLAST method (D > C) most false
positives are composed of mainly outgoing HGTs but only
a few ancient HGTs.

Application to real datasets
The close weight distributions for real datasets exhibit a
bimodal distribution containing a broad typical region
and a sharp atypical peak that is located close to zero
(as expected) (Figure 3A-C, Additional file 1: Figure S4).
Therefore, the cutoffs that divide genes with atypical
BLAST hit distribution from typical ones can be set accord-
ingly and HGT events can be predicted based on the
cutoffs. As an example, fingerprint plots for Rickettsia and
Galdieria exhibit an apparent overlapping pattern between
the atypical peak and the HGT-derived genes identified
by previous phylogenetic studies [37,79] (Additional file 1:
Figures S4E and S5D). In contrast, the human genome does
not have an apparent atypical peak, which is also expected
(Additional file 1: Figure S4F).
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Analysis of the Rickettsia genomes
The global fingerprint describing the pattern of BLAST
hit distribution of the Rickettsia analysis is illustrated in
Figure 3A-C. Results from Hartigans’ dip test strongly
support the non-unimodality of all three weight distri-
butions (p-values < 2.2 × 10−16). The seven Rickettsia
genomes contain a total number of 8484 annotated
chromosomal protein-coding genes, of which 800 genes
have an atypical close weight and a typical distal weight,
and thus are potentially HGT-derived (Table 2, Additional
file 2: Table S1). The percentage of putative HGT-derived
genes in a genome ranges from 6.05% (76 genes) in R. akari
to 18.29% (256 genes) in R. felis. The number of putative
HGT-derived genes per genome is positively correlated to
the size of the genome (R2 = 0.755), implying contribu-
tion of HGT to the relative genome expansions in the
overall reductive trend of Rickettsia genome evolution,
confirming previous studies [65]. It is notable that the
R. felis genome contains significantly more putative
HGT-derived genes (256) than the rest of the genomes
(90.7 ± 20.5, mean and standard deviation), suggesting
a particular prevalence of potential HGT events in R. felis
evolution. The comparison between the fingerprint on
R. felis genome alone (Additional file 1: Figure S5A-C) and
the global fingerprint (Figure 3A-C) clearly reveals that
R. felis has a much larger atypical peak in the close
weight distribution. This reinforces outcomes from
Merhej et al. [37], which found that the frequency of
cross-species bacterial recombination in R. felis had
been underestimated.
To further explore the biological information behind

the predicted patterns, the results have been summarized
in three separate contexts: by putative donor group, by
functional annotation and by gene orthology. Similar to
previous in depth analyses by Merhej et al. [37], our ana-
lyses revealed frequent donor links, such as Legionellales,
Enterobacteriales and Burkholderiales, and frequently
transferred gene categories, such as genes encoding trans-
posases and genes involved in phage and plasmid activity
Table 2 Summary of genes predicted to be horizontally acqu

Abbreviation Size of chromosome (Mb) Number of chrom
protein-coding ge

R. akari 1.23 1256

R. felis 1.49 1400

R. massiliae 1.36 968

R. slovaca 1.28 1114

R. rickettsii 1.26 1342

R. africae 1.28 1030

R. conorii 1.27 1374

Mean 1.31 1212
(Additional file 1: Figures S6 and S7; Additional file 2:
Table S2).

Stochastic manipulation of Rickettsia data: stability
of prediction
The results of these simulations (Additional file 1: Figures
S8 and S9) suggest that HGTector’s performance is
notably insensitive to database error. Even under an
extremely high proportion (10%) of mislabeled genes,
its precision remains close to 100%. As a comparison,
the precision of the conventional BLAST-based approach
D >C drops below 15% (Additional file 1: Figure S8A).
Gene loss and rate variation in the close group also
have remarkably weaker deleterious effects on preci-
sion of HGTector than that of conventional BLAST
based methods under the D > C scenario (Additional
file 1: Figure S8B, C). Rate variations in input genomes
destabilize prediction results at a certain range (5-15%),
but overall, precision remains high in HGTector when
rate increases, as compared to conventional BLAST
(Additional file 1: Figure S8D). Taxon sampling bias
has little effect when it happens to distal organisms.
However, in some close organisms (such as R. prowazekii
and R. bellii), this effect may severely compromise the
predicting power if the bias is strong (for example, a
certain taxon group has many more representatives than
others) (Additional file 1: Figure S9). Smaller sample
size of input genes has a minor effect on the prediction
result (Additional file 1: Figure S10), suggesting that the
method is still effective on incomplete genomes. It should
be noted that when the sample size is extremely small
(e.g., 50 genes only), the statistical power of gene cluster-
ing can be significantly impaired (green bars in Additional
file 1: Figure S10).
The above results suggest that our method is generally

unaffected by stochastic events, some of which are major
challenges to current methods (see Background). A con-
cern is taxon sampling bias in the close group, an issue
that can be alleviated by properly defining grouping
ired in seven Rickettsia genomes

osomal
nes

Number of predicted
HGT-derived genes

Percentage of predicted
HGT-derived genes

76 6.05%

256 18.29%

93 9.61%

72 6.46%

98 7.30%

78 7.57%

127 9.24%

114.3 9.43%
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scenario and masking redundant taxonomic groups
using HGTector’s flexible functionality (see Methods -
Computational pipeline).

Comparison of HGTector with other methods for analysis of
the R. felis genome
Together, HGTector and six other methods identified
595 putative HGT-derived genes, out of all 1400 chromo-
somal protein-coding genes in the R. felis genome (42.5%)
(Table 2, Figure 5, Additional file 2: Table S3). Of these
Figure 5 Predicted HGTs by multiple methods mapped onto the Rick
R. felis, with genomic islands (GIs) predicted by IslandViewer and GIST indic
methods indicated by arrowheads.
595 genes, 82 have been uniquely identified by HGTector.
There’s a considerable portion of overlapping hits between
each pair of results, but none of the programs produce
completely identical HGT predictions. As expected, there
is relatively more overlap between two methods of the
same category. Meanwhile, the overlap factors (OFs) be-
tween two methods from different categories are signifi-
cantly lower. However, HGTector is a notable exception
because its overlap with any other method of the three
categories is significantly higher than between other
ettsia felis genome. A circular view of the whole chromosome of
ated by boxes, and putative HGT-derived genes predicted by other



Zhu et al. BMC Genomics 2014, 15:717 Page 16 of 18
http://www.biomedcentral.com/1471-2164/15/717
methods from different categories (Additional file 2:
Table S4 and Additional file 1: Figure S11).
By comparing the results of HGTector and the results

of the other two BLAST-based methods, it is noticeable
that HGTector can effectively exclude false positives caused
by database errors. For instance, BBH and DarkHorse
respectively predicted 61 and 97 genes to be acquired
from Ixodes scapularis (deer tick), which is a common
host of Rickettsia. Therefore, it is likely that the sequenced
Ixodes samples contained Rickettsia endosymbionts, and
its DNA was also sequenced and indiscriminately labeled
as Ixodes DNA in the unassembled shotgun sequences
([NCBI:PRJNA34667]). In other words, these are potential
database errors. In contrast, in HGTector’s result, none of
these genes were predicted as HGT-derived, because they
have considerable amount of close hits (violation of rule 1),
despite the presence of a single high-score Ixodes hit.
Detection of HGT is fraught with challenges, such as

ambiguity in compositional features and phyletic pat-
terns [80], difficulty in phylogenetic reconstruction [81],
interference from database error and incompleteness
[49]. The observed low consistency between methods is
not surprising, and has precedents in multiple previous
studies [13-15]. Given the significant overlap of HGTector
with all other previously employed approaches, we suggest
that it is effective in producing meaningful prediction
results on real datasets.

Conclusions
In this paper a novel method for genome-wide detection
of vertical versus non-vertical gene history (in particular,
putative HGT events) is presented. It features a statistical
analysis of BLAST hit distribution patterns in the context
of a priori defined phylogenetic hierarchies. The innovation
of this method is the systematic consideration of all BLAST
hits of all genes within selected genomes. This is in contrast
to conventional BLAST-based approaches, which typically
rely on a single best hit for each gene (see Background).
The three-category grouping scenario is a simplified but
effective implementation of prior phylogenetic knowledge
into a BLAST hit distribution analysis. The set-up allows
high flexibility in group assignments that best match the
taxonomic level of the user’s interest, as well as immediate
response to frequent changes in microbial taxonomy. The
advantage of this systematic approach is that it captures the
overall image of gene evolution while being significantly
insensitive to stochastic events. As demonstrated in this
study, stochastic events such as gene loss, rate variation
and database error may impose serious problem to con-
ventional methods (see Background), but have compara-
tively negligible effects on HGTector.
The core assumption of the method is that the typical

and atypical parts of the BLAST hit distribution are dis-
tinguishable. This assumption is repeatedly supported by
tests on both simulated and real-world genomic data (Fig-
ures 2 and 3, Additional file 1: Figure S4). With the pro-
posed procedures of computing cutoffs and the rules of
targeting genes that are likely to be HGT-derived,
remarkable prediction success was achieved (Figures 4
and 5, Additional file 2: Table S3). Given these results, we
suggest that HGTector is a useful addition to conventional
BLAST-based approaches.
The HGTector pipeline has advantages of speed, automa-

tion, compatibility and low requirement for computational
resources, making this program a generally applicable tool
for discovery of vertical, and non-vertical history of genes,
as well as initial HGT prediction. It is especially suitable
for gaining a rapid and comprehensive overview of newly
sequenced genomes to identify their evolutionary and eco-
logical linkages with other organisms, facilitating further
exploration of the functional drivers of the dynamics of
genome evolution. It has to be made clear that an atypical
BLAST hit distribution is an empirical observation, rather
than a strict certification of HGT. Since an HGT predom-
inantly reflects a past evolutionary event, it is theoretically
impossible to identify exact gene donors and mechanisms,
and any analysis is only an approximation to possible
scenarios. Therefore, we recommend HGTector as a
discovery tool for a detection of potential HGT-derived
genes that can be further analyzed with phylogenetic
approaches. This is much more effective approach than
a very time-consuming and technically challenging
process of a priori phylogenetic analysis of all genes
within all target genomes, which becomes decreasingly
feasible as more genomic data are present.
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